Free Ebooks Download :

Chip Multiprocessor Architecture Techniques to Improve Throughput and Latency

      Author: Baturi   |   13 September 2022   |   comments: 0

Chip Multiprocessor Architecture Techniques to Improve Throughput and Latency
Chip Multiprocessor Architecture: Techniques to Improve Throughput and Latency by Kunle Olukotun
English | PDF | 2007 | 154 Pages | ISBN : 159829122X | 5.5 MB
Chip multiprocessors - also called multi-core microprocessors or CMPs for short - are now the only way to build high-performance microprocessors, for a variety of reasons. Large uniprocessors are no longer scaling in performance, because it is only possible to extract a limited amount of parallelism from a typical instruction stream using conventional superscalar instruction issue techniques. In addition, one cannot simply ratchet up the clock speed on today's processors, or the power dissipation will become prohibitive in all but water-cooled systems.


Chip multiprocessors - also called multi-core microprocessors or CMPs for short - are now the only way to build high-performance microprocessors, for a variety of reasons. Large uniprocessors are no longer scaling in performance, because it is only possible to extract a limited amount of parallelism from a typical instruction stream using conventional superscalar instruction issue techniques. In addition, one cannot simply ratchet up the clock speed on today's processors, or the power dissipation will become prohibitive in all but water-cooled systems.
Compounding these problems is the simple fact that with the immense numbers of transistors available on today's microprocessor chips, it is too costly to design and debug ever-larger processors every year or two. CMPs avoid these problems by filling up a processor die with multiple, relatively simpler processor cores instead of just one huge core. The exact size of a CMP s cores can vary from very simple pipelines to moderately complex superscalar processors, but once a core has been selected the CMP s performance can easily scale across silicon process generations simply by stamping down more copies of the hard-to-design, high-speed processor core in each successive chip generation. In addition, parallel code execution, obtained by spreading multiple threads of execution across the various cores, can achieve significantly higher performance than would be possible using only a single core. While parallel threads are already common in many useful workloads, there are still important workloads that are hard to divide into parallel threads. The low inter-processor communication latency between the cores in a CMP helps make a much wider range of applications viable candidates for parallel execution than was possible with conventional, multi-chip multiprocessors; nevertheless, limited parallelism in key applications is the main factor limiting acceptance of CMPs in some types of systems. After a discussion of the basic pros and cons of CMPs when they are compared with conventional uniprocessors, this book examines how CMPs can best be designed to handle two radically different kinds of workloads that are likely to be used with a CMP: highly parallel, throughput-sensitive applications at one end of the spectrum, and less parallel, latency-sensitive applications at the other. Throughput-sensitive applications, such as server workloads that handle many independent transactions at once, require careful balancing of all parts of a CMP that can limit throughput, such as the individual cores, on-chip cache memory, and off-chip memory interfaces. Several studies and example systems, such as the Sun Niagara, that examine the necessary tradeoffs are presented here. In contrast, latency-sensitive applications many desktop applications fall into this category require a focus on reducing inter-core communication latency and applying techniques to help programmers divide their programs into multiple threads as easily as possible. This book discusses many techniques that can be used in CMPs to simplify parallel programming, with an emphasis on research directions proposed at Stanford University. To illustrate the advantages possible with a CMP using a couple of solid examples, extra focus is given to thread-level speculation (TLS), a way to automatically break up nominally sequential applications into parallel threads on a CMP, and transactional memory. This model can greatly simplify manual parallel programming by using hardware instead of conventional software locks to enforce atomic code execution of blocks of instructions, a technique that makes parallel coding much less error-prone. Contents: The Case for CMPs / Improving Throughput / Improving Latency Automatically / Improving Latency using Manual Parallel Programming / A Multicore World: The Future of CMPs




[b]Links are Interchangeable - No Password - Single Extraction
Chip Multiprocessor Architecture Techniques to Improve Throughput and Latency Fast Download
Chip Multiprocessor Architecture Techniques to Improve Throughput and Latency Full Download

free Chip Multiprocessor Architecture Techniques to Improve Throughput and Latency, Downloads Chip Multiprocessor Architecture Techniques to Improve Throughput and Latency, Rapidgator Chip Multiprocessor Architecture Techniques to Improve Throughput and Latency, Nitroflare Chip Multiprocessor Architecture Techniques to Improve Throughput and Latency, Mediafire Chip Multiprocessor Architecture Techniques to Improve Throughput and Latency, Uploadgig Chip Multiprocessor Architecture Techniques to Improve Throughput and Latency, Mega Chip Multiprocessor Architecture Techniques to Improve Throughput and Latency, Torrent Download Chip Multiprocessor Architecture Techniques to Improve Throughput and Latency, HitFile Chip Multiprocessor Architecture Techniques to Improve Throughput and Latency , GoogleDrive Chip Multiprocessor Architecture Techniques to Improve Throughput and Latency,  Please feel free to post your Chip Multiprocessor Architecture Techniques to Improve Throughput and Latency Download, Tutorials, Ebook, Audio Books, Magazines, Software, Mp3, Free WSO Download , Free Courses Graphics , video, subtitle, sample, torrent, NFO, Crack, Patch,Rapidgator, mediafire,Mega, Serial, keygen, Watch online, requirements or whatever-related comments here.





DISCLAIMER
None of the files shown here are hosted or transmitted by this server. The links are provided solely by this site's users. The administrator of our site cannot be held responsible for what its users post, or any other actions of its users. You may not use this site to distribute or download any material when you do not have the legal rights to do so. It is your own responsibility to adhere to these terms.

Copyright © 2018 - 2023 Dl4All. All rights reserved.