Explainable AI Recipes: Implement Solutions to Model Explainability and Interpretability with Python
English | 2023 | ISBN: 1484290283 | 289 Pages | PDF EPUB (True) | 24 MB
The book starts with model interpretation for supervised learning linear models, which includes feature importance, partial dependency analysis, and influential data point analysis for both classification and regression models. Next, it explains supervised learning using non-linear models and state-of-the-art frameworks such as SHAP values/scores and LIME for local interpretation. Explainability for time series models is covered using LIME and SHAP, as are natural language processing-related tasks such as text classification, and sentiment analysis with ELI5, and ALIBI. The book concludes with complex model classification and regression-like neural networks and deep learning models using the CAPTUM framework that shows feature attribution, neuron attribution, and activation attribution.
Fikper
6dhz2.E.A.R.rar.html
Rapidgator
6dhz2.E.A.R.rar.html
NitroFlare
6dhz2.E.A.R.rar
Uploadgig
6dhz2.E.A.R.rar
Please Help Me Click Connect Icon Below Here and Share News to Social Network | Thanks you !