Dl4All Logo
Free Ebooks Download :

Guaranteed Computational Methods for Self-Adjoint Differential Eigenvalue Problems (SpringerBriefs in Mathematics)

   Author: creativelivenew1   |   15 March 2025   |   Comments icon: 0

Guaranteed Computational Methods for Self-Adjoint Differential Eigenvalue Problems (SpringerBriefs in Mathematics)
Free Download Guaranteed Computational Methods for Self-Adjoint Differential Eigenvalue Problems (SpringerBriefs in Mathematics) by Xuefeng Liu
English | June 26, 2024 | ISBN: 9819735769 | 144 pages | MOBI | 22 Mb
This monograph presents a study of newly developed guaranteed computational methodologies for eigenvalue problems of self-adjoint differential operators. It focuses on deriving explicit lower and upper bounds for eigenvalues, as well as explicit estimations for eigenfunction approximations. Such explicit error estimations rely on the finite element method (FEM) along with a new theory of explicit quantitative error estimation, diverging from traditional studies that primarily focus on qualitative results.


To achieve quantitative error estimation, the monograph begins with an extensive analysis of the hypercircle method, that is, the Prager-Synge theorem. It introduces a novel a priori error estimation technique based on the hypercircle method. This facilitates the explicit estimation of Galerkin projection errors for equations such as Poisson's and Stokes', which are crucial for obtaining lower eigenvalue bounds via conforming FEMs.
A thorough exploration of the fundamental theory of projection-based explicit lower eigenvalue bounds under a general setting of eigenvalue problems is also offered. This theory is extensively detailed when applied to model eigenvalue problems associated with the Laplace, biharmonic, Stokes, and Steklov differential operators, which are solved by either conforming or non-conforming FEMs.
Moreover, there is a detailed discussion on the Lehmann-Goerisch theorem for the purpose of high-precision eigenvalue bounds, showing its relationship with previously established theorems, such as Lehmann-Maehly's method and Kato's bound. The implementation details of this theorem with FEMs, a topic rarely covered in existing literature, are also clarified.
Lastly, the monograph introduces three new algorithms to estimate eigenfunction approximation errors, revealing the potency of classical theorems. Algorithm I extends Birkhoff's result that works for simple eigenvalues to handle clustered eigenvalues, while Algorithm II generalizes the Davis-Kahan theorem, initially designed for strongly formulated eigenvalue problems, to address weakly formulated eigenvalue problems. Algorithm III utilizes the explicit Galerkin projection error estimation to efficiently handle Galerkin projection-based approximations.


Links are Interchangeable - Single Extraction

Free Guaranteed Computational Methods for Self-Adjoint Differential Eigenvalue Problems (SpringerBriefs in Mathematics), Downloads Guaranteed Computational Methods for Self-Adjoint Differential Eigenvalue Problems (SpringerBriefs in Mathematics), Rapidgator Guaranteed Computational Methods for Self-Adjoint Differential Eigenvalue Problems (SpringerBriefs in Mathematics), Mega Guaranteed Computational Methods for Self-Adjoint Differential Eigenvalue Problems (SpringerBriefs in Mathematics), Torrent Guaranteed Computational Methods for Self-Adjoint Differential Eigenvalue Problems (SpringerBriefs in Mathematics), Google Drive Guaranteed Computational Methods for Self-Adjoint Differential Eigenvalue Problems (SpringerBriefs in Mathematics).
Feel free to post comments, reviews, or suggestions about Guaranteed Computational Methods for Self-Adjoint Differential Eigenvalue Problems (SpringerBriefs in Mathematics) including tutorials, audio books, software, videos, patches, and more.

[related-news]



[/related-news]
DISCLAIMER
None of the files shown here are hosted or transmitted by this server. The links are provided solely by this site's users. The administrator of our site cannot be held responsible for what its users post, or any other actions of its users. You may not use this site to distribute or download any material when you do not have the legal rights to do so. It is your own responsibility to adhere to these terms.

Copyright © 2018 - 2025 Dl4All. All rights reserved.