Dl4All Logo
Free Ebooks Download :

Building Scalable Deep Learning Pipelines on AWS Develop, Train, and Deploy Deep Learning Models

   Author: creativelivenew1   |   15 June 2025   |   Comments icon: 0


Free Download Building Scalable Deep Learning Pipelines on AWS: Develop, Train, and Deploy Deep Learning Models by Abdelaziz Testas
English | December 20, 2024 | ISBN: 8868810166 | 780 pages | MOBI | 2.34 Mb
This book is your comprehensive guide to creating powerful, end-to-end deep learning workflows on Amazon Web Services (AWS). The book explores how to integrate essential big data tools and technologies―such as PySpark, PyTorch, TensorFlow, Airflow, EC2, and S3―to streamline the development, training, and deployment of deep learning models.


Starting with the importance of scaling advanced machine learning models, this book leverages AWS's robust infrastructure and comprehensive suite of services. It guides you through the setup and configuration needed to maximize the potential of deep learning technologies. You will gain in-depth knowledge of building deep learning pipelines, including data preprocessing, feature engineering, model training, evaluation, and deployment.
The book provides insights into setting up an AWS environment, configuring necessary tools, and using PySpark for distributed data processing. You will also delve into hands-on tutorials for PyTorch and TensorFlow, mastering their roles in building and training neural networks. Additionally, you will learn how Apache Airflow can orchestrate complex workflows and how Amazon S3 and EC2 enhance model deployment at scale.
By the end of this book, you will be equipped to tackle real-world challenges and seize opportunities in the rapidly evolving field of deep learning with AWS. You will gain the insights and skills needed to drive innovation and maintain a competitive edge in today's data-driven landscape.
What You Will LearnMaximize AWS services for scalable and high-performance deep learning architecturesHarness the capacity of PyTorch and TensorFlow for advanced neural network developmentUtilize PySpark for efficient distributed data processing on AWSOrchestrate complex workflows with Apache Airflow for seamless data processing, model training, and deployment
Who This Book Is For
Data scientists looking to expand their skill set to include deep learning on AWS, machine learning engineers tasked with designing and deploying machine learning systems who want to incorporate deep learning capabilities into their applications, AI practitioners working across various industries who seek to leverage deep learning for solving complex problems and gaining a competitive advantage


Rapidgator
ebejj.7z.html
Fileaxa
ebejj.7z
Fikper
ebejj.7z.html


Links are Interchangeable - Single Extraction

Free Building Scalable Deep Learning Pipelines on AWS Develop, Train, and Deploy Deep Learning Models, Downloads Building Scalable Deep Learning Pipelines on AWS Develop, Train, and Deploy Deep Learning Models, Rapidgator Building Scalable Deep Learning Pipelines on AWS Develop, Train, and Deploy Deep Learning Models, Mega Building Scalable Deep Learning Pipelines on AWS Develop, Train, and Deploy Deep Learning Models, Torrent Building Scalable Deep Learning Pipelines on AWS Develop, Train, and Deploy Deep Learning Models, Google Drive Building Scalable Deep Learning Pipelines on AWS Develop, Train, and Deploy Deep Learning Models.
Feel free to post comments, reviews, or suggestions about Building Scalable Deep Learning Pipelines on AWS Develop, Train, and Deploy Deep Learning Models including tutorials, audio books, software, videos, patches, and more.

[related-news]



[/related-news]
DISCLAIMER
None of the files shown here are hosted or transmitted by this server. The links are provided solely by this site's users. The administrator of our site cannot be held responsible for what its users post, or any other actions of its users. You may not use this site to distribute or download any material when you do not have the legal rights to do so. It is your own responsibility to adhere to these terms.

Copyright © 2018 - 2025 Dl4All. All rights reserved.