Tutorials :

Coursera - Machine Learning Algorithms in the Real World Specialization by Alberta Machine Intell...

      Author: DownTR.CC   |   19 August 2020   |   comments: 0

Coursera - Machine Learning Algorithms in the Real World Specialization by Alberta Machine Intell... Coursera - Machine Learning: Algorithms in the Real World Specialization by Alberta Machine Intelligence Institute Video: .mp4 (1280x720) | Audio: AAC, 44100 kHz, 2ch | Size: 2.85 Gb | Materials: PDF Genre: eLearning Video | Duration: 11h 41m | Language: English Machine Learning Real World Applications. Master techniques for implementing a machine learning project. Introduction to Applied Machine Learning This course is for professionals who have heard the buzz around machine learning and want to apply machine learning to data analysis and automation. Whether finance, medicine, engineering, business or other domains, this course will introduce you to problem definition and data preparation in a machine learning project. By the end of the course, you will be able to clearly define a machine learning problem using two approaches. You will learn to survey available data resources and identify potential ML applications. You will learn to take a business need and turn it into a machine learning application. You will prepare data for effective machine learning applications. Machine Learning Algorithms: Supervised Learning Tip to Tail This course takes you from understanding the fundamentals of a machine learning project. Learners will understand and implement supervised learning techniques on real case studies to analyze business case scenarios where decision trees, k-nearest neighbours and support vector machines are optimally used. Learners will also gain skills to contrast the practical consequences of different data preparation steps and describe common production issues in applied ML. To be successful, you should have at least beginner-level background in Python programming (e.g., be able to read and code trace existing code, be comfortable with conditionals, loops, variables, lists, dictionaries and arrays). You should have a basic understanding of linear algebra (vector notation) and statistics (probability distributions and mean/median/mode). This is the second course of the Applied Machine Learning Specialization brought to you by Coursera and the Alberta Machine Intelligence Institute. Data for Machine Learning This course is all about data and how it is critical to the success of your applied machine learning model. Completing this course will give learners the skills to: Understand the critical elements of data in the learning, training and operation phases Understand biases and sources of data Implement techniques to improve the generality of your model Explain the consequences of overfitting and identify mitigation measures Implement appropriate test and validation measures. Demonstrate how the accuracy of your model can be improved with thoughtful feature engineering. Explore the impact of the algorithm parameters on model strength To be successful in this course, you should have at least beginner-level background in Python programming (e.g., be able to read and code trace existing code, be comfortable with conditionals, loops, variables, lists, dictionaries and arrays). You should have a basic understanding of linear algebra (vector notation) and statistics (probability distributions and mean/median/mode). Optimizing Machine Learning Performance This course synthesizes everything your have learned in the applied machine learning specialization. You will now walk through a complete machine learning project to prepare a machine learning maintenance roadmap. You will understand and analyze how to deal with changing data. You will also be able to identify and interpret potential unintended effects in your project. You will understand and define procedures to operationalize and maintain your applied machine learning model. By the end of this course you will have all the tools and understanding you need to confidently roll out a machine learning project and prepare to optimize it in your business context. To be successful, you should have at least beginner-level background in Python programming (e.g., be able to read and code trace existing code, be comfortable with conditionals, loops, variables, lists, dictionaries and arrays). You should have a basic understanding of linear algebra (vector notation) and statistics (probability distributions and mean/median/mode). Buy Premium From My Links To Get Resumable Support,Max Speed & Support Me
https://uploadgig.com/file/download/6e23a71938B2e935/vu7g5.Coursera..Machine.Learning.Algorithms.in.the.Real.World.Specialization.by.Alberta.Machine.Intelligence.Institute.part1.rar https://uploadgig.com/file/download/5459092c7fec045D/vu7g5.Coursera..Machine.Learning.Algorithms.in.the.Real.World.Specialization.by.Alberta.Machine.Intelligence.Institute.part2.rar https://uploadgig.com/file/download/c4816A488c2E722b/vu7g5.Coursera..Machine.Learning.Algorithms.in.the.Real.World.Specialization.by.Alberta.Machine.Intelligence.Institute.part3.rar https://rapidgator.net/file/e9e5954a15a524ba706b8bd86810d10d/vu7g5.Coursera..Machine.Learning.Algorithms.in.the.Real.World.Specialization.by.Alberta.Machine.Intelligence.Institute.part1.rar https://rapidgator.net/file/a52809334cb556ac352b5932f6adfe72/vu7g5.Coursera..Machine.Learning.Algorithms.in.the.Real.World.Specialization.by.Alberta.Machine.Intelligence.Institute.part2.rar https://rapidgator.net/file/6e95f8d271ad2f251c26654eaf2e46f1/vu7g5.Coursera..Machine.Learning.Algorithms.in.the.Real.World.Specialization.by.Alberta.Machine.Intelligence.Institute.part3.rar http://nitroflare.com/view/858647447BB70A5/vu7g5.Coursera..Machine.Learning.Algorithms.in.the.Real.World.Specialization.by.Alberta.Machine.Intelligence.Institute.part1.rar http://nitroflare.com/view/144CF6FA0E367D3/vu7g5.Coursera..Machine.Learning.Algorithms.in.the.Real.World.Specialization.by.Alberta.Machine.Intelligence.Institute.part2.rar http://nitroflare.com/view/EACC96C21443DAF/vu7g5.Coursera..Machine.Learning.Algorithms.in.the.Real.World.Specialization.by.Alberta.Machine.Intelligence.Institute.part3.rar


Download now LINK
Coursera - Machine Learning Algorithms in the Real World Specialization by Alberta Machine Intell... Fast Download
Coursera - Machine Learning Algorithms in the Real World Specialization by Alberta Machine Intell... Full Download

free Coursera - Machine Learning Algorithms in the Real World Specialization by Alberta Machine Intell..., Downloads Coursera - Machine Learning Algorithms in the Real World Specialization by Alberta Machine Intell..., Rapidgator Coursera - Machine Learning Algorithms in the Real World Specialization by Alberta Machine Intell..., Nitroflare Coursera - Machine Learning Algorithms in the Real World Specialization by Alberta Machine Intell..., Mediafire Coursera - Machine Learning Algorithms in the Real World Specialization by Alberta Machine Intell..., Uploadgig Coursera - Machine Learning Algorithms in the Real World Specialization by Alberta Machine Intell..., Mega Coursera - Machine Learning Algorithms in the Real World Specialization by Alberta Machine Intell..., Torrent Download Coursera - Machine Learning Algorithms in the Real World Specialization by Alberta Machine Intell..., HitFile Coursera - Machine Learning Algorithms in the Real World Specialization by Alberta Machine Intell... , GoogleDrive Coursera - Machine Learning Algorithms in the Real World Specialization by Alberta Machine Intell...,  Please feel free to post your Coursera - Machine Learning Algorithms in the Real World Specialization by Alberta Machine Intell... Download, Tutorials, Ebook, Audio Books, Magazines, Software, Mp3, Free WSO Download , Free Courses Graphics , video, subtitle, sample, torrent, NFO, Crack, Patch,Rapidgator, mediafire,Mega, Serial, keygen, Watch online, requirements or whatever-related comments here.





DISCLAIMER
None of the files shown here are hosted or transmitted by this server. The links are provided solely by this site's users. The administrator of our site cannot be held responsible for what its users post, or any other actions of its users. You may not use this site to distribute or download any material when you do not have the legal rights to do so. It is your own responsibility to adhere to these terms.

Copyright © 2018 - 2023 Dl4All. All rights reserved.