Tutorials :

Udemy - Deep Learning for NLP - Part 1

      Author: Baturi   |   12 August 2021   |   comments: 0



Udemy - Deep Learning for NLP - Part 1
MP4 | Video: h264, 1280x720 | Audio: AAC, 44.1 KHz
Language: English | Size: 1.14 GB | Duration: 3h 16m
What you'll learn


Deep Learning for Natural Language Processing
Multi-Layered Perceptrons (MLPs)
Word embeddings
Recurrent Models: RNNs, LSTMs, GRUs and variants
DL for NLP
Requirements
Basics of machine learning
Description
This course is a part of "Deep Learning for NLP" Series. In this course, I will introduce basic deep learning concepts like multi-layered perceptrons, word embeddings and recurrent neural networks. These concepts form the base for good understanding of advanced deep learning models for Natural Language Processing.
The course consists of three sections.
In the first section, I will talk about Basic concepts in artificial neural networks like activation functions (like ramp, step, sigmoid, tanh, relu, leaky relu), integration functions, perceptron and back-propagation algorithms. I also talk about what is deep learning, how is it related to machine learning and artificial intelligence? Finally, I will talk about how to handle overfittting in neural network training using methods like regularization, early stopping and dropouts.
In the second section, I will talk about various kinds of word embedding methods. I will start with basic methods like Onehot encoding and Singular Value Decomposition (SVD). Next I will talk about the popular word2vec model including both the CBOW and Skipgram methods. Further, I will talk about multiple methods to make the softmax computation efficient. This will be followed by discussion on GloVe. As special word embedding topics I will cover Cross-lingual embeddings. Finally, I will also talk about sub-word embeddings like BPE (Byte Pair Encoding), wordPiece, SentencePiece which are popularly used for Transformer based models.
In the third session, I will start with general discussion on ngram models. Next I will briefly introduce the neural network language model (NNLM). Then we will spend quite some time understanding how RNNs work. We will also talk about RNN variants like BiRNNs, Deep BiRNNs. Then I will discuss the vanishing and exploding gradients problem. This will be followed by details of the LSTMs and GRUs architectures.
Who this course is for:
Beginners in deep learning
Python developers interested in data science concepts

Homepage
https://www.udemy.com/course/ahol-dl4nlp1/


Buy Premium From My Links To Get Resumable Support,Max Speed & Support Me


Links are Interchangeable - No Password - Single Extraction
Udemy - Deep Learning for NLP - Part 1 Fast Download
Udemy - Deep Learning for NLP - Part 1 Full Download

free Udemy - Deep Learning for NLP - Part 1, Downloads Udemy - Deep Learning for NLP - Part 1, Rapidgator Udemy - Deep Learning for NLP - Part 1, Nitroflare Udemy - Deep Learning for NLP - Part 1, Mediafire Udemy - Deep Learning for NLP - Part 1, Uploadgig Udemy - Deep Learning for NLP - Part 1, Mega Udemy - Deep Learning for NLP - Part 1, Torrent Download Udemy - Deep Learning for NLP - Part 1, HitFile Udemy - Deep Learning for NLP - Part 1 , GoogleDrive Udemy - Deep Learning for NLP - Part 1,  Please feel free to post your Udemy - Deep Learning for NLP - Part 1 Download, Tutorials, Ebook, Audio Books, Magazines, Software, Mp3, Free WSO Download , Free Courses Graphics , video, subtitle, sample, torrent, NFO, Crack, Patch,Rapidgator, mediafire,Mega, Serial, keygen, Watch online, requirements or whatever-related comments here.





DISCLAIMER
None of the files shown here are hosted or transmitted by this server. The links are provided solely by this site's users. The administrator of our site cannot be held responsible for what its users post, or any other actions of its users. You may not use this site to distribute or download any material when you do not have the legal rights to do so. It is your own responsibility to adhere to these terms.

Copyright © 2018 - 2023 Dl4All. All rights reserved.