Tutorials :

Udemy - Machine Learning and Data Science Using Python (2021)

      Author: Baturi   |   05 November 2021   |   comments: 0



Udemy - Machine Learning and Data Science Using Python (2021)
MP4 | Video: h264, 1280x720 | Audio: AAC, 44.1 KHz, 2 Ch
Genre: eLearning | Language: English + srt | Duration: 32 lectures (1h 56m) | Size: 684 MB
Begin your ML and DS Journey


What you'll learn:
Introduction to Python
Data Structures in Python
Control Structures and Functions
Python for Data Science
Introduction to NumPy
Operations on NumPy Arrays
Introduction to Pandas
Getting and Cleaning Data
Data Visualisation in Python
Introduction to Data Visualisation
Basics of Visualisation
Descriptionting Data Distributions
Descriptionting Categorical and Time-Series Data
Requirements
No programming experience is needed.
Description
Module-1​
Welcome to the Pre-Program Preparatory Content
Session-1:​
1) Introduction​
2) Preparatory Content Learning Experience
MODULE-2​
INTRODUCTION TO PYTHON
Session-1:​
Understanding Digital Disruption Course structure​
1) Introduction​
2) Understanding Primary Actions​
3) Understanding es & Important Pointers
Session-2:​
Introduction to python​
1) Getting Started - Installation​
2) Introduction to Jupyter Notebook​
The Basics Data Structures in Python
3) Lists​
4) Tuples​
5) Dictionaries​
6) Sets
Session-3:​
Control Structures and Functions​
1) Introduction​
2) If-Elif-Else​
3) Loops​
4) Comprehensions​
5) Functions​
6) Map, Filter, and Reduce​
7) Summary
Session-4:​
Practice Questions​
1) Practice Questions I​
2) Practice Questions II
Module-3​
Python for Data Science
Session-1:​
Introduction to NumPy​
1) Introduction​
2) NumPy Basics​
3) Creating NumPy Arrays​
4) Structure and Content of Arrays​
5) Subset, Slice, Index and Iterate through Arrays​
6) Multidimensional Arrays​
7) Computation Times in NumPy and Standard Python Lists​
8) Summary
Session-2:​
Operations on NumPy Arrays​
1) Introduction​
2) Basic Operations​
3) Operations on Arrays​
4) Basic Linear Algebra Operations​
5) Summary
Session-3:​
Introduction to Pandas​
1) Introduction​
2) Pandas Basics​
3) Indexing and Selecting Data​
4) Merge and Append​
5) Grouping and Summarizing Data frames​
6) Lambda function & Pivot tables​
7) Summary
Session-4:​
Getting and Cleaning Data​
1) Introduction
2) Reading Delimited and Relational Databases​
3) Reading Data from Websites​
4) Getting Data from APIs​
5) Reading Data from PDF Files​
6) Cleaning Datasets​
7) Summary
Session-5:​
Practice Questions​
1) NumPy Practice Questions​
2) Pandas Practice Questions​
3) Pandas Practice Questions Solution
Module-4
Session-1:​
Vectors and Vector Spaces​
1) Introduction to Linear Algebra​
2) Vectors: The Basics​
3) Vector Operations - The Dot Product​
4) Dot Product - Example Application​
5) Vector Spaces​
6) Summary
Session-2:​
Linear Transformations and Matrices​
1) Matrices: The Basics​
2) Matrix Operations - I​
3) Matrix Operations - II
4) Linear Transformations​
5) Determinants​
6) System of Linear Equations​
7) Inverse, Rank, Column and Null Space​
8) Least Squares Approximation​
9) Summary
Session-3:​
Eigenvalues and Eigenvectors​
1) Eigenvectors: What Are They?​
2) Calculating Eigenvalues and Eigenvectors​
3) Eigen decomposition of a Matrix​
4) Summary
Session-4:​
Multivariable Calculus
Module-5
Session-1:​
Introduction to Data Visualisation​
1) Introduction: Data Visualisation​
2) Visualisations - Some Examples​
3) Visualisations - The World of Imagery​
4) Understanding Basic Chart Types I​
5) Understanding Basic Chart Types II​
6) Summary: Data Visualisation
Session-2:​
Basics of Visualisation Introduction​
1) Data Visualisation Toolkit​
2) Components of a Description​
3) Sub-Descriptions​
4) Functionalities of Descriptions​
5) Summary
Session-3:​
Descriptionting Data Distributions Introduction​
1) Univariate Distributions​
2) Univariate Distributions - Rug Descriptions​
3) Bivariate Distributions​
4) Bivariate Distributions - Descriptionting Pairwise Relationships​
5) Summary
Session-4:​
Descriptionting Categorical and Time-Series Data​
1) Introduction​
2) Descriptionting Distributions Across Categories​
3) Descriptionting Aggregate Values Across Categories​
4) Time Series Data​
5) Summary
Session-5:​
1) Practice Questions I​
2) Practice Questions II
Who this course is for
Beginner Python developers curious about Machine Learning
Homepage
https://www.udemy.com/course/dd-innovations-ml-ds-python-all


Buy Premium From My Links To Get Resumable Support,Max Speed & Support Me


Links are Interchangeable - No Password - Single Extraction
Udemy - Machine Learning and Data Science Using Python (2021) Fast Download
Udemy - Machine Learning and Data Science Using Python (2021) Full Download

free Udemy - Machine Learning and Data Science Using Python (2021), Downloads Udemy - Machine Learning and Data Science Using Python (2021), Rapidgator Udemy - Machine Learning and Data Science Using Python (2021), Nitroflare Udemy - Machine Learning and Data Science Using Python (2021), Mediafire Udemy - Machine Learning and Data Science Using Python (2021), Uploadgig Udemy - Machine Learning and Data Science Using Python (2021), Mega Udemy - Machine Learning and Data Science Using Python (2021), Torrent Download Udemy - Machine Learning and Data Science Using Python (2021), HitFile Udemy - Machine Learning and Data Science Using Python (2021) , GoogleDrive Udemy - Machine Learning and Data Science Using Python (2021),  Please feel free to post your Udemy - Machine Learning and Data Science Using Python (2021) Download, Tutorials, Ebook, Audio Books, Magazines, Software, Mp3, Free WSO Download , Free Courses Graphics , video, subtitle, sample, torrent, NFO, Crack, Patch,Rapidgator, mediafire,Mega, Serial, keygen, Watch online, requirements or whatever-related comments here.





DISCLAIMER
None of the files shown here are hosted or transmitted by this server. The links are provided solely by this site's users. The administrator of our site cannot be held responsible for what its users post, or any other actions of its users. You may not use this site to distribute or download any material when you do not have the legal rights to do so. It is your own responsibility to adhere to these terms.

Copyright © 2018 - 2023 Dl4All. All rights reserved.