Dl4All Logo
Tutorials :

RAG– Powered AI – Build a Chatbot inPython, LangChain & Ollama

   Author: Baturi   |   23 March 2025   |   Comments icon: 0

RAG– Powered AI – Build a Chatbot inPython, LangChain & Ollama

Free Download RAG– Powered AI – Build a Chatbot inPython, LangChain & Ollama


Published: 3/2025
MP4 | Video: h264, 1280x720 | Audio: AAC, 44.1 KHz, 2 Ch
Language: English | Duration: 3h 17m | Size: 1.58 GB
Learn to Build an AI-Powered PDF Q&A Chatbot with RAG, Ollama, LangChain, and Vector Embeddings in Python


What you'll learn


Understand Retrieval-Augmented Generation (RAG) – Learn how RAG improves LLM responses by combining real-world data with AI-generated text.
Build a PDF Q&A Chatbot – Develop a working chatbot that extracts and retrieves relevant information from a PDF using LangChain, Ollama
Implement Vector Embeddings & Semantic Search – Generate vector embeddings for document text and use a local database for information retrieval
Run Local AI Models with Ollama – Set up and interact with local large language models (LLMs) like Mistral and Llama3 to generate AI-driven responses.

Requirements


Basic Python Knowledge – Familiarity with Python programming (variables, functions, and loops).
Fundamental Understanding of AI/LLMs – Some exposure to large language models (LLMs) and AI concepts is helpful but not required.
VS Code & Command Line Basics – Ability to install and run Python packages using the terminal or command prompt.
No Prior Experience with LangChain or Ollama Needed – The course covers these tools from scratch.

Description


Course

Description

:Welcome to "Building a RAG Application with Ollama, LangChain, and Vector Embeddings in Python"! This hands-on course is designed for Python developers, data scientists, and AI enthusiasts looking to dive into the world of Retrieval-Augmented Generation (RAG) and learn how to build intelligent document-based applications.In this course, you will learn how to create a powerful PDF Q&A chatbot using state-of-the-art AI tools like Ollama, LangChain, and Vector Embeddings. You'll gain practical experience in processing PDF documents, extracting and generating meaningful information, and integrating a local Large Language Model (LLM) to provide context-aware responses to user queries.

What you will learn:

What is RAG (Retrieval-Augmented Generation) and how it enhances the power of LLMsHow to process PDF documents using LangChainExtracting text from PDFs and splitting it into chunks for efficient retrievalGenerating vector embeddings using semantic search for better accuracyHow to query and retrieve relevant information from documents using Vector DBIntegrating a local LLM with Ollama to generate context-aware responsesPractical tips for fine-tuning and improving AI model responsesCourse Highlights:Step-by-step guidance on setting up your development environment with VS Code, Python, and necessary libraries.Practical projects where you'll build a fully functional PDF Q&A chatbot from scratch.Hands-on experience with Ollama (a powerful tool for running local LLMs) and LangChain (for document-based AI processing).Learn the fundamentals of vector embeddings and how they improve the search and response accuracy of your AI system.Build your skills in Python and explore how to apply machine learning techniques to real-world scenarios.By the end of the course, you'll have the skills to build and deploy your own AI-powered document Q&A chatbot. Whether you are looking to implement AI in a professional setting, develop your own projects, or explore advanced AI concepts, this course will provide the tools and knowledge to help you succeed.Who is this course for?Python Developers who want to integrate AI into their projects.Data Scientists looking to apply RAG-based techniques to their workflows.AI Enthusiasts and learners who want to deepen their knowledge of LLMs and AI tools like Ollama and LangChain.Beginners interested in working with AI and machine learning to build real-world applications.Get ready to dive into the exciting world of AI, enhance your Python skills, and start building your very own intelligent PDF-based chatbot!

Who this course is for


Python developers interested in AI and LLM-powered applications.
Data scientists & ML engineers exploring Retrieval-Augmented Generation (RAG).
Tech enthusiasts & AI beginners who want to build AI-driven document Q&A systems.
Students & researchers looking to extract insights from large PDF documents using AI.
Homepage:
https://www.udemy.com/course/rag-powered-ai-build-a-chatbot-inpython-langchain-ollama/



No Password - Links are Interchangeable

Free RAG– Powered AI – Build a Chatbot inPython, LangChain & Ollama, Downloads RAG– Powered AI – Build a Chatbot inPython, LangChain & Ollama, Rapidgator RAG– Powered AI – Build a Chatbot inPython, LangChain & Ollama, Mega RAG– Powered AI – Build a Chatbot inPython, LangChain & Ollama, Torrent RAG– Powered AI – Build a Chatbot inPython, LangChain & Ollama, Google Drive RAG– Powered AI – Build a Chatbot inPython, LangChain & Ollama.
Feel free to post comments, reviews, or suggestions about RAG– Powered AI – Build a Chatbot inPython, LangChain & Ollama including tutorials, audio books, software, videos, patches, and more.

[related-news]



[/related-news]
DISCLAIMER
None of the files shown here are hosted or transmitted by this server. The links are provided solely by this site's users. The administrator of our site cannot be held responsible for what its users post, or any other actions of its users. You may not use this site to distribute or download any material when you do not have the legal rights to do so. It is your own responsibility to adhere to these terms.

Copyright © 2018 - 2025 Dl4All. All rights reserved.