Dl4All Logo
Tutorials :

Testing or Evaluating Generative AIRAG, Agentic AI, Handson

   Author: Baturi   |   08 August 2025   |   Comments icon: 0


Free Download Testing or Evaluating Generative AI:RAG, Agentic AI, Handson
Published 7/2025
MP4 | Video: h264, 1280x720 | Audio: AAC, 44.1 KHz, 2 Ch
Language: English | Duration: 2h 47m | Size: 1.7 GB
Mastering LLM Evaluation: Hands-on with RAG Testing, Agentic AI Testing, DeepEval, LangSmith. Learn how to test GenAI.


What you'll learn
Learn the end-to-end process of evaluating LLM applications. Quality criteria to choosing the right evaluation method, metrics for RAG, Agentic AI.
Learn Evaluation of RAG with RAGAs framework. Understand RAG and what are the component to evaluate of RAG.
Learn how to evaluate RAG with context precision, recall metrics. How to test RAG application with Python and RAGAs.
Learn how to test and evaluate RAG application with Pytest. Learn API automation of RAG application.
Learn how to test and evaluate Agentic AI application using DeepEval. Automation testing of Agentic AI using Pytest.
Learn how to trace RAG application using LangSmith. Create evaluation dataset using Python. Evaluate with Dataset using LangSmith.
Requirements
Very basic idea of Python and Generative AI.
Description
Evaluating Large Language Model (LLM) applications is critical to ensuring reliability, accuracy, and user trust—especially as these systems are integrated into real-world solutions. This hands-on course guides you through the complete evaluation lifecycle of LLM-based applications, with a special focus on Retrieval-Augmented Generation (RAG) and Agentic AI workflows.You'll begin by understanding the core evaluation process, exploring how to measure quality across different stages of a RAG pipeline. Dive deep into RAGAs—the community-driven evaluation framework—and learn to compute key metrics like context relevancy, faithfulness, and hallucination rate using open-source tools.Through practical labs, you'll create and automate tests with Pytest, evaluate multi-agent systems, and implement tests using DeepEval. You'll also trace and debug your LLM workflows with LangSmith, gaining visibility into each component of your RAG or Agentic AI system.By the end of the course, you'll know how to create custom evaluation datasets and validate LLM outputs against ground truth responses. Whether you're a developer, quality engineer, or AI enthusiast, this course will equip you with the practical tools and techniques needed to build trustworthy, production-ready LLM applications.No prior experience in evaluation frameworks is required—just basic Python knowledge and a curiosity to explore.Enroll and learn how to evaluate or test Gen AI application.
Who this course is for
Beginners, Testers, Quality Engineers, SDET, Data Engineers, Data Scientists, Evaluator, Gen AI developer, Students, Researchers, Project managers
Homepage
https://www.udemy.com/course/testgenai/



Buy Premium From My Links To Get Resumable Support,Max Speed & Support Me


No Password - Links are Interchangeable

Free Testing or Evaluating Generative AIRAG, Agentic AI, Handson, Downloads Testing or Evaluating Generative AIRAG, Agentic AI, Handson, Rapidgator Testing or Evaluating Generative AIRAG, Agentic AI, Handson, Mega Testing or Evaluating Generative AIRAG, Agentic AI, Handson, Torrent Testing or Evaluating Generative AIRAG, Agentic AI, Handson, Google Drive Testing or Evaluating Generative AIRAG, Agentic AI, Handson.
Feel free to post comments, reviews, or suggestions about Testing or Evaluating Generative AIRAG, Agentic AI, Handson including tutorials, audio books, software, videos, patches, and more.

[related-news]



[/related-news]
DISCLAIMER
None of the files shown here are hosted or transmitted by this server. The links are provided solely by this site's users. The administrator of our site cannot be held responsible for what its users post, or any other actions of its users. You may not use this site to distribute or download any material when you do not have the legal rights to do so. It is your own responsibility to adhere to these terms.

Copyright © 2018 - 2025 Dl4All. All rights reserved.